適用範囲		モデル名 適用号機			U-40-3
					10001~
区分	検査箇所	查項目(条件	.)	単位	検査基準値
	エンジン本体 【非電子制御式】	エンジン回転速度 ハイアイドリング ローアイドリング(キャノピ/キャリ (冷却水温) (作動油温)		\min^{-1} \min^{-1} $(^{\circ}C)$ $(^{\circ}C)$	2400 1000~1100 (50≥) (50±5)
エンジン		弁すき間 吸気弁 隙間 排気弁 隙間 (測定条件)		mm mm (℃)	0.18~0.22 0.18~0.22 (冷態時)
		圧縮圧力又は気筒間圧縮圧力差 (冷却水温) (回転速度)		MPa kgf/cm2 (℃) (rpm)	3.23~3.72 33~38 (80~90) (250rpm)
	燃料装置	噴射ノズルの燃料噴射開始圧力		MPa kgf/cm2	13.7~14.7 140~150
	冷却装置	ファン駆動ベルトの張り [測定位置・条件] (中間を指で押す力) kgとNの両方で表記		mm N·m kgf	0 ダイナモ〜ファンプーリ 58.8 〜 68.6 6〜7
	走行性能	最高速度	1速	秋	12.4~15.7
		ゴム/鉄 [測定方法・創	2速	17	7.1~8.8 [図 No.7]
	履帯 (クローラベルト)	ゴムベルト	張り (たわみ量) [測定方法・条件(図面 番号表示)] L・D寸法	mm	10 ~ 15 [図 No.5] D
走行装置		鉄シュー	張り (たわみ量) [測定方法・条件(図面 番号表示)] L・D寸法	mm	80~85 [図 No.5] D
			リンクピッチの伸び [測定方法・条件]	mm	0 540
			腹板取付けホルト締付けトルク (別定方法・条件)	N·m kg·m	_
作業装置	作業機自然降下	バケット先端 (測定時間) (作動油温) 作業装置姿 (図面番号表	勢	mm (分) (℃)	_

クボタ

適用範囲		モデル名	U-40-3 10001~	
		適用号機		
区分	検査箇所	查項目(条件)	単位	検査基準値
作業装置	シリンダ自然伸縮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		mm 負荷kg mm 負荷kg mm	20≥ 20≥ 252 [図 No.1] 10≥ 252 [図 No.1] 10≥ 0 [図 No.1] 20≥ [図 No.8]
		作業装置姿勢 (図面番号表示) アームシリンダ伸ばし 縮め 作業装置姿勢 (図面番号表示) バケットシリンダ伸ばし 縮め 作業装置姿勢 (図面番号表示) 性能測定条件 (荷重・設定モード等)	sec sec sec sec	[図 No.2] 2.5 ~ 3.1 2.3 ~ 2.9 [図 No.3] 3.1 ~ 3.7 2.2 ~ 2.8 [図 No.4]
油圧装置	油圧回路設定圧力	主回路設定圧力 性能測定条(*油温 (設定モード*エンジン回転	MPa kgf/cm2 (℃) (rpm)	23.5 240 (50±5) (フル回転)
動力伝達装置	旋回ベアリング取付けボルトの	アウタレース取付けボルトの締付けトルク インナレース取付けボルトの締付け	N·m kgf·m N·m kgf·m	259.9~304.0 26.5~31.0 259.9~304.0 26.5~31.0
却刀以是衣但	旋回減速機取付けボルトの締付	油圧モータ取付けポルトの締付けトルク	N·m kgf·m	259.9~304.0 26.5~31.0
備考		旋回滅速機取付けボルトの締付けトルク	N·m kgf·m	_

★印:新車基準値を表す。

クボタ

フハン				
適用範囲		モデル名		U-40-3
		適用号機		10001~
区分	検査箇所		単位	検査基準値
動力伝達装置	クレーン時の旋回速度	2回転の所要時間	秒	11.8~17.4
		エンジン回転数	rpm	1575~1725
		測定姿勢	参照図	[図番 G-001]
1				

クボタ

旋回所要時間の測定方法

- ・測定前に左右の旋回操作を繰り返し、旋回モータ 図番G-001 ーを十分温めておく。
- ・作動油温度を 50±5 ℃にする。
- 測定姿勢は、ブームシリンダー、アームシリンダー、バッケットシリンダーを最伸長とする。
- ・旋回姿勢は、ブームを上げ、アーム掻き込み、バケット掻き込みとする。
- ・自動切替付の機種は、クレーンモードスイッチを 押すと自動的に機種別のエンジン回転数になるの で、2回転する時間を測定する。
- ・自動切り替え以外の機種は、エンジン最高回転で、 旋回操作レバーをフルストローク操作し、旋回体 が3回転する時間を測定する。

【注意】

・測定を開始する前に、旋回範囲内に人や障害物がないことを確認すること。

クボタ

項目	測 定 方 法
 シリンダの自然降下量 〔測定要領〕 1. 水平な場所に機械を置く。バケット山積負荷とする。 2. アームシリンダを一杯縮め、バケットシリンダを一杯伸ばす。 3. バケットの底面地上高さを、1m程度の位置にする。 4. ブーム、アーム、バケットのシリンダロッドに印をつける。 5. 10 分間後の降下量を、スケールで測定する。油温:50±5℃ 	☑ No. 1
 ブームシリンダ アームシリング、パケットシリンダを最縮小。 エンジンを最高回転にする。 接地→シリンダエンド間の所要時間を測定する。 注、クッション作動時間は含まない。 	
 アームシリンダ 1. ブーム、アームを図の状態にする。 2. エンジンを最高回転にする。 3. アームシリンダのフルストロークの所要時間を測定する。 	
 パケットシリンダ プーム、アームを図の状態にする。 エンジンを最高回転にする。 バケットシリンダのフルストロークの所要時間を測定する。 	⊠ No. 4

クボタ

項目	測 定 方 法
クローラの張り 注)ゴムクローラの場合は継目マーク(∞)を上部中央にくるようにして調整する。 調整後 1~2回クローラを回して張代を確認する。	 クローラ部を浮かす トラックローラの踏面と、リンク踏面とのすき間 L X D を測定する。 図 No. 5
鉄シューリンクピッチの伸び 測定方法	 (4リンク分) ・マスタピンから 1~2 リンク離れた 4 リンク分を 測定する。 ・シューリンクを張った状態で測定すること。 図 No. 6
走行性能 最高速度測定方法 条件 作動油温度:50±5℃	 ・走行姿勢にし、各速度の最高速度が得られるまで助走する。 ・10m間の所要時間を測定する。 ①助走 ②測定区間(10m) 図 No. 7
ブレードシリンダ自然伸縮 測定方法 条件 作動油温度:50±5℃	・フロントとブレードを使用し上図のように車体を 持ち上げる。 ・ブレードのシリンダロッドに印を付ける。 ・10 分後の降下量をスケールで測定する。 図 No. 8